
Section V.D 3He Polarization and Transport

Cutaway view of the polarized 3He source currently under construction at LANL.

As is illustrated in the discussion on sensitivity for the proposed experiment, the purity
of the 3He polarization P3 in the experimental volume is of considerable importance. For a
polarized neutron source and P3 ≈ 1.0, δf ∝ 1/P3 where δf is the final uncertainty in the
measurement of the possible neutron EDM. However, if the neutron source is unpolarized,
the neutron polarization Pn = ηP3, where η depends on various UCN loss mechanisms, so
that δf ∝ 1/P3

2. Moreover, if P3 and Pn differ from unity significantly, δf depends more
strongly on P3 than 1/P3

2.
A number of methods have been used in various laboratories to produce polarized

3He [1, 2, 3, 4, 5]. These include melting polarized solid 3He at mK temperatures, opti-
cally pumping 3He in the metastable 3S1 state, and using spin-exchange collisions with
optically-pumped alkali atoms. The first of these techniques has been used to produce
a polarization P3 ≈ 0.95, but requires specialized and expensive apparatus. The latter
techniques promise polarizations of nearly 90%, but have not demonstrated a polarization
exceeding 70% experimentally. The experiment under consideration in this manuscript

85



would benefit from P3 greater than has been achieved with these optical pumping meth-
ods.

Another method which has the potential to yield a polarization near unity with a
simpler apparatus than that of the cryogenic method is to filter an atomic beam of 3He in
a magnetic field gradient. While this method is not capable of producing the same quantity
of polarized 3He as the previously mentioned methods, the intensity of the polarized beam
should be adequate for our purposes.

However, unlike most other atoms that have been polarized in this manner, ground-
state 3He has only a nuclear magnetic moment which is smaller than the electron magnetic
moment by three orders of magnitude. Due to the relatively small force which can be ap-
plied to the 3He through this magnetic moment, the time during which the atom interacts
with the field must be increased and the kinetic energy of the atom must be decreased
relative to atoms with nonzero electron spin to achieve the same polarization for similar
magnetic field gradients. These two requirements can be satisfied by operation of the 3He
source at a temperature near 1K and by use of an interaction region about 1m long.

V.D.1 Quadrupole Potential

The energy of a magnetic dipole ~µ in a magnetic field ~B(~r) is given by

U(~r) = −~µ · ~B(~r) (1)

and the force imposed on the dipole if the field is static is given by

~F (~r) = µ(ŝ · ∇) ~B(~r) (2)

where ŝ is the direction of the spin and |ŝ| = 1. For spin-1/2 3He, µ = −h̄γ3/2 where
γ3 = 2.04 · 108/Ts is the 3He gyromagnetic ratio.

We are considering a magnetic quadrupole configuration such as that shown in Fig. 1.
This configuration can have a relatively open geometry which helps to remove 3He atoms
in the wrong spin state from the interaction region and to reduce the probability that
they interact with the atoms confined along the polarizer axis.

However, the magnetic field in the rest frame of an atom will change in magnitude and
direction as the atom follows its trajectory through the polarizer. If these changes are too
fast, the atom’s spin will not maintain its relationship to the magnetic field and the atomic
beam will lose polarization. To maintain an atom’s polarization throughout its trajectory,
its spin must be able to adiabatically follow the direction of the field. Explicitly,

|Ḃ|
|B| � |γ3B|, (3)

where Ḃ ≡ dB/dt and γ3B is the Larmor frequency.
An additional concern is that the magnitude of the field is theoretically zero at the

center of the polarizer. Polarized atoms traveling through this region of zero field may
become unpolarized and reduce both the net polarization and polarizer throughput. The
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Figure 1: Quadrupole configuration of permanent magnets similar to that being
used in the polarizer under construction at LANL.

addition of a weak axial magnetic field Bz mitigates this potential difficulty. If this
weak axial field is included, Eq. 3 can be expressed in terms of the velocity of the atom
transverse to the axis of the polarizer vr and the radius of the polarizer aperture Ra as

γ3Bz �
|vr|
Ra

. (4)

As long as this condition is satisfied, an atom’s spin will maintain its initial relationship
with the magnetic field so that ŝ = B̂ always. The force from Eq. 2 can then be expressed
as

~FB(~r) = ±µ
B0

Ra

1
√

1 + (Bz/B0)2(Ra/r)2
r̂ (5)

where r is the distance from the axis of the polarizer to the atom, B0 is the magnitude
of the field near the surface of one of the magnets and ± refers to the two spin states
anti parallel and parallel to ~B, respectively. Obviously, atoms whose spin is parallel to ~B
experience a restoring force and the atoms in the other state are repulsed from the axis
of the quadrupole. Note that the depth of the potential well is reduced unless Bz � B0.

V.D.2 Polarizer Parameters

If the source is a jet of gaseous 3He some distance from the entrance aperture of the
polarizer, the acceptance angle as a function of atom velocity can be estimated by setting
the magnetic potential energy equal to the kinetic energy of the transverse motion. Thus,

sin(θ0) ≈
√

µB0

mv2
(6)
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for an atom located halfway between the center and edge of the polarizer and a magnetic
field of B0 � Bz at the edge of the polarizer.

The velocity dependence of the intensity, I(v), of an atomic beam can be expressed
as [6]

I(v) = I0
2

α4
v3e(−v2/α2) (7)

where α2 = 2kBT/m. With vrms =
√

2α to replace v in Eq. 6, the acceptance angle can
be expressed as a function of source temperature T as

sin(θ0) ≈
√

µB0

4kBT
. (8)

For B0 = 0.75T and T = 0.6K, this yields θ0 ≈ 0.9◦.
Eq. 6 can also be used with Eq. 4 (which also requires that Bz � B0) to further

constrain Bz. These relationships can be combined to yield

1

Ra

√

h̄

2mγ3B0

� Bz

B0

� 1. (9)

For the values of B0 and T stated previously, Bz ≈ 0.03T is an appropriate choice.

V.D.3 Atomic Beam Intensity

The angular dependence of the intensity of an effusing source is given by dI0/dΩ =
nv̄A cos(θ)/4π [6] where n and A are the source density and aperture area respectively, θ is
the azimuthal angle from the source aperture normal and Ω is the solid angle. Integrating
between 0 ≤ θ ≤ θ0 yields

I0 =
1

4
nv̄A sin2(θ0)

≈ 1

2

p√
mkBT

A sin2(θ0)

≈ 1

8

µB0
√

m(kBT )3
pA, (10)

where p is the source pressure. For 3He and the parameters discussed above, Eq. 10 yields
I0/pA ≈ 1 · 1016/s·mtorr·cm2. The design of the source aperture that we are currently
considering will allow for an effective area of about 1 cm2.

The pressure at which the source can be operated depends upon the specific geometry
of the source nozzle and there are several concerns that must be addressed to determine
an adequate nozzle design. First, the gas pressure in the volume outside the nozzle must
be kept much lower than the source pressure. This depends on several items such as the
geometry of that volume, the capacity of the pumps acting on that volume and, of course,
the flow of 3He from the nozzle. Second, we expect that the amount of 3He in the system
will be relatively small and will need to be used efficiently. Fortunately, the forward flow
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and hence the quality of the vacuum outside the source can be enhanced by building the
aperture from a collection of small tubes of radius ρs and length Ls. The forward flow
remains the same while the integrated intensity is reduced by 8ρs/3Ls [6].

A third concern is that the mean-free-path in the nozzle aperture given by λs ≈
1/
√

2nσ, where σ = 1.0 · 10−14 cm2 is the scattering cross-section of He, should not be
much smaller than ρs to insure that the lowest velocity atoms are not scattered out of the
beam. The mean-free-path for helium can be expressed as λ3/p ≈ 4.4 · 10−3 cm/mtorr.
With ρs = 3.5 · 10−1 mm, p should be less than a few 10−2 mtorr and

I0 ≈ 1 · 1014/s, (11)

given that only half of the 3He enter the polarizer in the spin state where ŝ = B̂.

V.D.4 Numerical Simulations

As noted in [7], the actual performance of the polarizer will differ from the simple
calculations of the previous section. This is due in part to the fact that several important
considerations were ignored in these simple calculations. For example, we must consider
a method to inhibit fast atoms in the wrong spin state from traversing the polarizer and
we must consider the mechanical angular momentum of the atom about the axis of the
polarizer. In defense of the calculation presented in the previous section, these items are
difficult to treat analytically.

That the angular momentum of the 3He about the polarizer axis is likely to be im-
portant, can be illustrated by considering the depth of the potential well relative to an
atom’s kinetic energy. The radial restoring force including the pseudo-force caused by the
atom’s centripetal acceleration can be expressed as

~F (~r) ≈ −1

2
h̄γ3

B0

Ra
r̂ + mr2

0v
2
φ

1

r3
r̂

= (−α + β
1

r3
)r̂ (12)

where r0 and vφ are the initial radial position and polar velocity of the atom. The potential
energy is then given by

U(r) = αr + β
1

2r2
(13)

which has a minimum at r3 = β/α. The potential minimum

Umin =
3

2
α2/3r

2/3
0 (mvφ)

1/3 (14)

which depends upon the kinetic energy of the polar motion to the 1/3 power. Clearly, a
atom can enter the polarizer with more kinetic energy in the transverse motion than was
considered in Eqs. 6 and 8.

V.D.5 Equations of Motion
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To better analyze the performance of the polarizer and to investigate several different
schemes to inhibit fast atoms from traversing the polarizer in the wrong spin state, we
chose a numerical analysis. This analysis involves a Runge-Kutta scheme to integrate the
differential equations describing the motion of the atom as it traverses the polarizer.

In addition to the restoring force expressed in Eq. 5, the effects of gravity and of
bending the horizontally oriented polarizer guide upwards were included. We also included
the ability to simulate the effect of cylindrically symmetric baffles placed along the bore
of the polarizer to inhibit fast atoms from traversing it unimpeded.

The effects of gravity and of bending of the polarizer bore can be expressed as

~Fg = −m(g +
v2

z

Rp
)ŷ

= −m(g +
v2

z

Rp
)(sin(φ)r̂ + cos(φ)φ̂) (15)

where g is the acceleration due to gravity, vz is axial velocity of the atom, and Rp is the
radius of curvature of the “bent” polarizer. The acceleration due to gravity is about 1% of
the acceleration due to the interaction of the dipole and magnetic field, but was included
for completeness as it introduced no additional complexity to the calculation.

The equations of motion can be immediately expressed in cylindrical coordinates as

~Ft = ~FB + ~Fg

= m~̈r

= m((r̈ − ṙφ̇2)r̂ + (rφ̈ + 2ṙφ̇)φ̂ + z̈ẑ) (16)

Velocities were chosen randomly from a weighted distribution that accurately repro-
duces Eq. 7. The directions of atoms leaving the source were also made to accurately
reproduce the cos(θ) dependence of an effusing source and no correction was made to simu-
late a source aperture of finite length. In all cases except otherwise noted, the simulations
were made for a polarizer whose dimensions are those of the polarizer currently under
construction at LANL. The relevant dimensions are: source aperture radius Rs = 6mm,
separation between source aperture and polarizer entrance aperture s = 22 cm, polarizer
aperture (or bore radius) Ra = 7.5mm, and polarizer length L = 1.25m. The source
temperature has been fixed at T = 0.6K and the magnetic fields are assumed to be
B0 = 0.75T and Bz = 0.03T for these simulations.

V.D.6 Straight, Unobstructed Polarizer

Figs. 2 show some results of a simulation for a straight polarizer when s = Ra. Only a
few percent of the incident atoms would successfully traverse the polarizer in this situation
due to the large angle relative to the polarizer axis with which most of them enter the
polarizer; 1/4 of the atoms leaving the source enter the polarizer. Of particular significance
in these data is Fig. 2(d) which shows the distribution of the angle of incidence for atoms
which could successfully traverse the polarizer. The standard deviation of these data
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from a mean of θ = 0 is σθ = 1.1◦. This is about 20% larger than θ0 = 0.9◦ from
Eq. 8 which better represents a maximum angle than a standard deviation. As mentioned
previously, this effect was expected because the simulation treated the transverse motion
more accurately than did our previous analysis.

0.16

0.12

0.08

0.04

0.00

P
ro

b
a
b
ili

ty

0.80.60.40.2
Radial Position/Aperature Radius

0.16

0.12

0.08

0.04

0.00

P
ro

b
a
b
ili

ty

6543210
Angle [deg]

0.06

0.04

0.02

0.00

P
ro

b
a
b
ili

ty

1601208040
Speed [m/s]

 
 
 

0.16

0.12

0.08

0.04

0.00

P
ro

b
a
b
ili

ty

1.51.00.5
Polar Speed [m/s]

0.16

0.12

0.08

0.04

0.00

P
ro

b
a
b
ili

ty

1.51.00.5
Radial Speed [m/s]

0.06

0.04

0.02

0.00

P
ro

b
a
b
ili

ty
 [
1
0

-1
]

1601208040
Speed [m/s]

(a)

(d)

(f)(e)

(c)

(b)

Figure 2: Results of a simulation where s = Ra for atoms with ŝ = B̂. The
polarizer was straight and unobstructed. The light gray bars in (a) represent
the velocity distribution of atoms which enter the polarizer and the dark gray
represents the subset that successfully traverses the polarizer. Panel (b) shows
the same results as (a) with a different vertical scale. Panels (c-f) show the
distributions of various initial conditions for atoms which successfully traverse
the polarizer. Only 4.8% of the incident atoms travel the full length of the
polarizer, but 1/4 of all the atoms leaving the source enter the polarizer. A
total of 250, 000 successful traverses of the polarizer were used to generate these
histograms.

Figs. 3 show some results of a simulation for a straight polarizer as in Figs. 2, but
with the source and polarizer separated by the same distance they will be separated in
the device being constructed at LANL. Note that the angular dependence in Fig. 3(d)
is slightly different from Fig. 2(d). Also note that the probability is very small for an
atom to enter the polarizer along the axis and successfully traverse the polarizer. From
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conservation of energy and momentum, we can then determine that it is equally unlikely
that an atom will pass through the axis during a successful traverse of the polarizer.
Because the atoms do not pass through the center of the polarizer where the transverse
magnetic field is null, they will not suffer depolarization by entering a region with an
undefined quantization axis even if the additional axial field Bz = 0.
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Figure 3: Results of a simulation with a straight polarizer and no obstructions for
atoms with ŝ = B̂. The light gray bars in (a) represent the velocity distribution
of atoms which enter the aperture of the polarizer and the dark gray represents
the subset that successfully traverses the polarizer. Panel (b) shows the same
results as (a) with a different vertical scale. Panels (c-f) show the distributions
of various initial conditions for atoms which successfully traverse the polarizer.
About 53% of the incident atoms successfully traverse the entire length of the
polarizer but only 0.1% of the atoms leaving the source enter the polarizer. A
total of 250, 000 successful traverses of the polarizer were used to generate these
histograms.

This calculation suggests that the probability of a 3He atom to traverse the polarizer,
given that it impinges on the polarizer entrance aperture and ŝ = B̂, is P+ = 0.53.
To calculate the throughput, Eq. 10 can be used where sin(θ0) ≈ Ra/s. Given that
B0 = 0.75T, T = 0.6K, p = 3 · 10−2 mtorr, A = 1 cm2 and half of the incident 3He have
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ŝ = B̂
I0 = 4 · 1014/s, (17)

which is four times larger than Eq. 11
The polarization of the 3He can be calculated if the throughput is known for atoms

which enter the polarizer in the orthogonal spin state. We have determined that the
probability of such an atom to successfully traverse the polarizer is P− = 0.0004. The net
polarization can be calculated from

P =
P+ − P−
P+ + P−

. (18)

For P+ = 0.53 and P− = 0.0004 as determined above, P > 0.998.

V.D.7 Two Baffles

Figs. 4 show some results of a simulation for a straight polarizer as in Figs. 3, but
with two baffles placed in the bore of the polarizer to eliminate line-of-sight down the
bore. The configuration of the baffles chosen was a disk-shaped structure placed in the
center of the polarizer midway between the ends and a matching washer placed at the
exit baffle. In all cases the edges of the baffles would overlap by 0.5mm if superposed. In
this manner, atoms in the wrong spin state should not be able to traverse the polarizer
under any circumstances. Several simulations were compared to arrive at the optimum
choice for the size of the baffles. A comparison of these results is displayed in Fig. 5 and
shows that the optimum radius of the disk baffle is slightly less than half of the radius of
the polarizer bore.

The results displayed in Figs. 4 are those for the baffle size with the largest throughput.
In this configuration, only 6.6% of the incident atoms in the proper spin state would pass
unimpeded through the polarizer. Note the discreet velocities which would traverse the
polarizer as shown in Fig. 4(b). Neglecting the effect of the atoms’ mechanical angular
momentum, these represent atoms whose trajectories would be parabolas and would make
an even number of passes through, or nearly through the axis of the polarizer. Obviously,
the throughput is dependent on the velocity profile and therefore on the temperature of
the source. A warmer source may be more effective for this arrangement. Also note the
profile of the angles of incidence in Fig. 4(d) which has a maximum at about 0.7◦. This
suggests that a different source nozzle geometry with slightly angled capillaries may be
able to increase the number of atoms which can pass the baffles undeflected.

V.D.8 Bent Polarizer

Figs. 6 show the results of a simulation for a polarizer bent to prevent a simultaneous
view of the entrance and exit apertures down the bore of the polarizer. As in the situation
with baffles discussed previously, fast atoms in the wrong spin state should not be able
to traverse the polarizer and degrade the polarization of the collected 3He. The radius
of curvature was chosen to be Rp = L2/16Ra ≈ 12m where L is the length of the
polarizer. As can be seen in Fig. 6(b), this method would clearly favor the slowest atoms;
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Figure 4: Results of a simulation with a straight polarizer and two baffles along
the bore for atoms with ŝ = B̂. The first baffle is a disk of radius 3.3mm in the
center of the bore and midway between the ends. The second baffle is a washer
with opening radius 2.8mm located in the exit aperture. This configuration was
found to optimize the throughput for this size polarizer and source temperature.
The light gray bars in (a) represent the velocity distribution of atoms which
enter the aperture of the polarizer and the dark gray represents the subset that
successfully traverses the polarizer. Panel (b) shows the same results as (a) with
a different vertical scale. Panels (c-f) show the distributions of various initial
conditions for atoms which successfully traverse the polarizer. About 6.6% of the
incident atoms travel the length of the polarizer unobstructed. A total of 250, 000
successful traverses of the polarizer were used to generate these histograms.

fast atoms would have enough centripetal acceleration to overcome the restoring effect of
the magnetic field. This method would be slightly less effective than using the baffles as
described previously, as only about 5.7% of the incident atoms could traverse the polarizer
without colliding into the walls or passing out of the bore. If the source is colder than
0.6K this configuration may have better throughput than the baffle configuration. (We
may be able to achieve 0.4K.)

Unfortunately, neither the baffle nor bent polarizer configurations could allow even
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Figure 5: Probability for successfully traversing the polarizer as a function of
baffle size for atoms with ŝ = B̂. The two baffles are 1) a disk-shaped structure
placed in the center of the polarizer midway between the ends and 2) a matching
washer placed at the exit baffle. The edges of the baffles would overlap by 0.5mm
if superposed. The baffle size reported is the radius of the disk less 0.25mm.

10% throughput, if the results of these simulations accurately reproduce reality. However,
another configuration is suggested by the equation Rp = L2/16Ra, where the radius of
curvature depends on the square of the polarizer length. A numerical simulation was
performed with a double-length polarizer of 2.5m and the results were promising. The
calculated throughput increased by more than a factor of 4 to 28% or about half of the
throughput of a straight polarizer of half the length (and no baffles). The results for
optimally chosen baffles of the same configuration used previously, but adapted for the
longer polarizer, showed a small decrease in the throughput.

V.D.9 Net Polarization and Throughput for Obstructed and Bent Polarizers

Either the use of baffles or bending the polarizer, to prevent a line-of-sight view of both
ends of the polarizer down its bore should prevent any gas which is not 3He in the desired
spin state from traversing the polarizer, provided the bore is sufficiently open along its
length to allow the escape of this other gas into the surrounding vacuum. However, the
highest throughput allowed by either of these methods for L = 1.25m is about 3% of the
incident 3He so that I0 ≈ 5 · 1013atoms/s. While this flux is theoretically sufficient for the
experiment described in this manuscript, we do not feel that it allows a sufficient margin
of error; experiments rarely work as well as is theoretically possible.

The “double-length” polarizer with L = 2.5m and a bend of Rp = L2/16Ra is not
an experimentally attractive solution if another solution can be found for L = 1.25m,
due to the additional apparatus required and space constraints. More explicitly, we wish
to build two identical polarizer sections and connect them with a short section in which
an RF field can be applied to change the direction of polarization and investigate the
net polarization of the 3He. The length of the entire apparatus would then exceed our
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Figure 6: Results of a simulation for a polarizer bent to occlude the view of one
aperture from the other looking down the bore and for atoms with ŝ = B̂. The
light gray bars in (a) represent the velocity distribution of atoms which enter the
aperture of the polarizer and the dark gray represents the subset that successfully
traverses the polarizer. Panel (b) shows the same results as (a) with a different
vertical scale. Panels (c-f) show the distributions of various initial conditions for
atoms which successfully traverse the polarizer. Only about 5.7% of the incident
atoms successfully traversed the polarizer. A total of 250, 000 successful traverses
of the polarizer were used to generate these histograms.

currently available space.

V.D.10 Conclusion

In conclusion, it appears that a throughput of about I0 ≈ 4 · 1014/s is possible for a
polarization of P > 0.998 with a polarizer of the type currently being assembled at LANL.
It is clear that the straight, unobstructed polarizer configuration is superior to any of the
other configurations considered here such as placing a particular series of baffles along
the length of the polarizer or a slight bend to occlude a view of one end from the other.
Although the polarization is theoretically unity with these other methods, the 0.2% lower
polarization with the straight, unobstructed polarizer is insignificant compared with its

96



tenfold improvement in throughput.
As was suggested previously, the more accurate numerical analysis suggests a four

times higher flux than the simple calculation of the first section. A further conclusion,
which can be derived from the numerical analysis, is that the axial magnetic field Bz is
not required; 3He with ŝ = B̂, that would successfully traverse the polarizer, would not
pass through the axis where the transverse field is null.

References

[1] G.A. Vermeulen and G. Frossati, Cryogenics 27, 139 (1987).

[2] R.G. Milner et al., Nucl. Instrum. Methods Phys. Res. A 274, 56 (1989).

[3] P.J. Nachor et al., J. Physique Lett. 43L, 525 (1982).

[4] C.G. Aminoff et al., Rev. Phys. Appl. 24, 827 (1989).

[5] K.P. Coulter et al., Nucl. Inst. Meth. A 270, 90 (1988).

[6] N.F. Ramsey, Molecular Beams (Oxford Univ. Press, Oxford, 1956).

[7] R. Golub and S.K. Lamoreaux, Phys. Reports 237, 1 (1994).

97


